
Afl-A093 149 CALIFORiNIA UI.4V DAVIS INTERCOLLEGE DIV OF STATISTICS F/6 12/1
04AXIW.M LIKELIHOOD ESTIMATION FOR A DISCRETE MULTI VARIATE SI4OCK--ETClU)
AUG 80 R A BOYLES, F J SAMANIEGO AFOSR-77-3180

UNCLASSIFIED TR-21 AFOSR-TR-80-1158 NA.

-EE~hEEEIh



li!1.0 laj8 2

I ,

*AO 11.0

111111-25 II

MICROCOPY RESOLUTION TEST CHART
w,^, lo, m...... ..



6N, I~L

If-

7w'L

. . 4

4' ;714,4,1

q lk

AlA

' f i "T.~,

T Vil 
14



4aximsa Likelihood Estimation

for a Discrete MultivarLate Shock Model*

Russell A. Boyles and Francisco J. Samaniego

Technical Report No. 21

August 1980

A

This research ws supported in part by the Air Force

Office of Scientific Research under the grant A'OSR-77-3180.

"IR FO.jc z. (. " 1,7 7 G F , SC U N. T IF IC R ES E-AR CH (A/YS C)
&UT II.C 0,* Ti "7L TO DDCI. !Oc c reviewed and is

!i.e IIIN A'i 190-12 (7b).

A. - o a .



READ INSTRUCTIONSREOTDOCUMENTATrION PAGE BEFORE COMPLETING FORM
I- POR N ER 2.GVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AF1S .- 1581 -Cl 6, -kc
37LE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

,~XIUM IELHOD STIMATION FOR A DISCRETE- Inei
MLLIAR-T HOCK MODEL NUMBER

UTRs)ABoles aAFrancisco J.j Samaniego (, 'L AFOI-77--3V

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 RGA -LMN. POECT. TAS:

11. CONTROLLING OFFICE NAME AND ADDRESS 2REPO&L.DjI...-1.

Air Force Office of Scientific Research/NM PAIA -

Boiling AFB, Washington, DC 203329
14. MONITORING AGENCY NAME & ADDRESS(II different from, Controlling Office) IS. SECURITY CLASS. o tIhis report)

UNCLASSIFIED
I58. DECLASSIFICATION'DOWNG;RADING

SCH EDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribuition unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from, Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary and identify by block num~ber)

maximum likelihood estimation, shock model, multivariate Bernoulli
di stribuition

20. ABSTRACT (Continua on reverse aide If neceasary and Identity by block number)

A k-variate Bernoulli distribution with k-~l parameters is obtained as a
shock model in which shocks are fatal to single components only or to all
comiponen~ts simultaneously in a k-ccinponent system. The maximum likelihood
estmator for model parameters if fully characterized. A simple iterative
schemie is investigated, and it is shown that the scheme converges to the
MLE for any seed in an interval whiose endpoints depend only on the observed
sample.

r~FORM -

DD I JAN731473J~ 'II FINOV 6SI BSLT UNCLASSIFIED

6) SECURITY CLASSIFICATION OF THIS PAGE (UnDate Ents.ed)



A k-variate Bernoulli distribution with k+ 1 parameters is obtained

as a shock model in which shocks are fatal to single components only or

to all components simultaneously in a k-component system. The maximum

likelihood estimator for model parameters is fully characterized. A

simple iterative scheme is investigated, and it is shown that the scheme

converges to the MLE for any seed in an interval whose endpoints depend

only on the observed sample.

I. INTRODUCTION

Let ZO,Zl,...,Zk be independent Bernoulli variables, each with its

own parameter pi' i0",...,k. Let

Y i W min(Z0'Z) d i-1,... ,k,

and consider the distribution of the random vector Y -(Yl'"' Y

This distributin is a (k+ 1)-parameter submodel of the multivariate

Bernoulli distributions studied in Boyles and Samaniego (1980). This

paper is dedicated to maximum likelihood estimation for this submodel,

henceforth to be denoted by MVB(k+ 1).

The model MVB(k+1) can be motivated as follows: Suppose a k

component system may be subjected to two kinde of shocks during an

observation period of length T0. A shock of type I is fatal to a i

single component and has no effect on other components. Define

0 if shock fatal to component
i occurs by time TO

I otherwise.
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A shock of type 2 is simultaneously fatal to all components. Define

( 0 if universal shock

occurs by time TO
Z0

1 otherwise.

and define

p1 - P(Zim I), i-O,l,...,k.

Then Y = 1 if and only if no shock fatal to component i occurs by time

T 0 The model above may be viewed as a discrete analogue of the submodel

of Marshall and Olkin's (1967) multivariate exponential (MVE) distribu-

tion with single and universal shocks only. This submodel of the MVE

distribution has been studied extensively by Proschan and Sullo (1976).

The general multivariate Bernoulli model studied in Boyles and

Samaniego (1980) postulates the existence of 2k -1 shocks, each selectively

fatal to a particular subset of the k components of the system. Maxi-

mum likelihood estimation for the general model poses substantial analy-

tical difficulties, and is an unsolved end perhaps intractable problem.

In Boyles and Samaniego (1980), the invariance property of MLE's is used

to produce an asymptotically optimal estimator that is in fact equal to

the MLE with limiting probability one. The submodel considered in this

paper is the only MVB shock model we have examined in which the MLE itself

can! be fully characterized. The MVB(k+1) distribution thus has the

following characteristics: (1) It is a model for random vectors with
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positively dependent components, (2) its parameter space is of relatively

low dimension (k+ 1 instead of 2k- I for the general model), permitting

efficient estimation with moderate sample sizes, (3) it is a reasonable

model in experiments where the primary or only cause of simultaneous

failure of components is a catastrophic or universal shock, (4) maximum

likelihood estimation is fully tractable. Because of these characteristics,

the authors feel that the model merits the separate detailed study pre-

sented in this paper.

In Section II, we characterize the MLE of the parameters of

MVB(k+ ), showing that in the most complex case, the MLE is a simple
tt

function of the smallest root of a certain kth degree polynomial. In

Section III, we give a simple iterative scheme which converges quickly

to the desired root.

II. MAXIMUM LIKELIHOOD ESTIMATION

Suppose a sample of size n is taken from MVB(k+ 1). The likelihood

function for the sample is given by

k N T-N(
T n-T - iL -o POQ0 l Pi (I -Pi) (2.1)

where k

QO" P(Y ' -]  l I-Pocl -V(l-pi),

T - # times Y 0

N,- # times Yi W I (i-l,2,...,k).

Note that

k
max(Nl,...,N] < T < Z N L (2.2)

i-I)
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If T=O then Ni=O 0 V i so (2.1) becomes L-Q0n which in maximized

by QO - 1. Since

k

Q0 1 - p0( 1 - T7(1-pi)] (2.3)
i=1

we maximize L in this case by taking either

P0 " 0, p arbitrary (i-I,...,k)

or
A * A *

p0 arbitrary, P1 - P2 " "" Pk 0.

Nov assume 0 < T N nd N2  N 3  .. Nk= 0. (2.1) becomes

N n-N N k N
L - P0 Q0  

1PO T ("iP) 1 (2.4)
i=2

It is evident from (2.3) that, for any fixed values of p0 and pit QO is

maximized by setting P20 P3 = ... a Pk = 0. Thus (2.4) is maximized for

fixed p 0 and p1 by setting p9 '.. pk - 0 ' We are left with

N n-N N N1  n-N1
L a PO QO p1  " (PP ) (1-pp 1 )

so that in this case (2.1) is maximized by any choice of
A A AkI

(pOpl... pk) E [O,1)k
+ l satisfying

P0 P1 -n N,

AA

P2
m ... Pk a 0.

Suppose now that T > 0, N > O...,N > 0, N1+ 1 = ... -Nk -0

where 2 < < k. For any fixed p,,P,...,Pj we maximize Q. by setting

P + ''" Pk " 0. In this case

L = o n- P (jp) T3
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so we maximize L (for fixed pOp 1 ,..,p-9* ) by setting p1+1 Pk 0.

Having done this we are left with the task of maximizing (2.1) subject to

k - A > 2, T > 0, N > 0,...,N > 0. Thus, without loss of generality,

we assume k > 2, T > 0, NI > 0, N2 > 0,...,Nk > 0 in the remainder of

this paper.

From (2.1) it can be shown that the likelihood equations

bn L = 0 (i-0,1,...,k)

bpi

are equivalent to the system

k
P0  Poc 1 - 7T (1-pi)J

i-l

-4 PlPo (2.5)

Ilk "PkP0

where 0 n'lT and 1 - N (il,...k). Solutions of (2.5) are in

one-to-one correspondence with solutions of

k
-4 pol '/-JT"(11.tL/po)].

-A I -l(11il

Setting x-P 0  we see that solutions of (2.5) are in one-to-one corres-

pondence with solutions of

k

1 - po0 x -T(1-i x). (2.6)
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Note that, because of (2.2) and our standing assumptions (Ni > 0 I i)

we have

k

i-I

and (2.7)

L(1) U min[pl,...,p'k] > 0.

Lemma. The system (2.5) has a solution p(pop pk) E [0, k+ 1

A k+l
iff (2.6) has a solution x E [l,01. Moreover, p E (0,1) iff

x E (li)

Proof. We already know that solutions of (2.5) are in one-to-one
Akl

correspondence with solutions of (2.6). Assume p E [0,1] k+ '. Then

k

P 0 - 'W(-Pi)] <S < 1

so x p C [0 , and solves (2.6). Conversely, if x E L, 0  then

M A A
1

P0 = x E [110, 1] c 0,t1] and, asince

0 <I i <1 
-<-o PO'

we have Pl = .i;&E [0,1] for i-l,...,k.

The verification of the second statement is the same, but we will

include it for completeness. Assume ; 0,1 .k+l Then (1-k > 0

so

k

40 P - IT - 7 1 Pi)] < p0 <1
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and x p p0 E (l,P.L ) Conversely, if x E (1, p0 )then PO x- E(p0 l ) a(0,l1)

and, since

0 < Pi <S WO < PO

we have pi 4 0 E (0,I). This completes the proof of the lemma.

Define
k

h(x) - ""(l -pix). (2.8)
i-l

th -1 k 1
h is a k degree polynomial with roots i '...,k Moreover

k
h(O)~- -,h> 0,

and h >0 on ('-( ) For x < p(k) we have

kh'(x) =-Z li~ (p- x) < 0

and
k

h"(x) ipj 1TF(l-'x) > 0.

k
In particular h'(0) - P -0 slope of line y -- p0 x. This

line and the curve yah(x) intersect at x-0 . If h'(0) -- p0 we have

h(x) > l-poX for all x E (Otk)). (In this case h" > 0 forcesL(k) > 1 ) - fhpox 0 th ina h cures E(,
1(k)_ I >P01. ) If h'(0) < - IA0 the line y= I -peo and the curve y-h(x)

( k ). .. . . .. . . ... . .. . . . . . .0l l i l ~ l S . . .'. . . . . . . . . . . . . . . .l . .
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intersect at exactly one point x E (0,P)J In fact, we have

*-1 -1 ( -' -xE (0,j 0 )],since 1lpx < 0 for x>poL wh ile h >0 on(k

-1JA

(0,0)

Figure I

in spite of the picture, we are not excluding the possibility that

PO I(k).9 or that x < 1. in fact, we have

k

x > 1 if f I( 1 - g) - h (1) :5 l- p. (2.9)

k
Assume now that ITIl-p1 ) > l-PO, i.e., x- [0,1). By the lenuaa,

the likelihood equations have no root In [0,1])+ , so we seek to maximize

L over the boundary of 0 ,1 ]k+1 . Now since N I > 0 V I and T > 0, we

see from (2.1) that L-0 on the faces (pi-OJ for L.0,1,. .. ,k. on

the other hand, since

k
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we have p < P0 => T-N > 0 (J-l,...,k). Thus L-O on the faces

(Pi"], i-1,...,k. On (Po" 1) we have

k n-T k Nt  T-Ni
L { - pi )  i-I ( pi)

k Nt n.Ni

-T Pi (1-pi)
i11

Thus the MLE in this case is given by

P M1, n " ( 1 ,..,k). (2.10)

k ,,

Now assume If(l-pi) < 1-p0, i.e., x E 1l, p).- We will show that

that the MLE in this case is given by

A A
1
l A *

P0 - x V P1 - (i-1,...,k). (2.11)

We first consider the likelihood function (2.1) as a function t of

-1
x E [l,91 ], i.e., we examine its values along the curve

[ir l plx,...,).. he n w have

in [0,I]k . First let x E (1, p 0) Then we hv
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-Tk n-T

k N 1  T-N

k n-T

x n Ikox N '1oi n-N

i-11

Now

-i bx + (1-jA0 )On[x-l+h(x)]

k 1Axk
Ik ( )) in5h (x) +- 0,. ~ 1a2 I-4ixl + F, an (1-1 j.x)

I-I i-1.

O -n x + (1- p0 )Rn[ x-1I+h(x))

k rItix,
+ in h (x) +F,4inI-x

Differentiating, we obtain



L'(x~a'-x 1  1 (1~ 0 t+h' (X)] Poh'(x)
1jW x - 1+h(x) h (x)

S ince

k
h'(x') E 7~ - pjx

i-I j~~i

h - (x) A[ I I pi

we have ++~x 'x

(X) X1 +(I - p 0 CI+ h'(x) j CP-1 '

x -1 + h(x) 0 h(x)

h (x) + (1 -pox)h' (x) (I! - [I+ +h' (x))
A h(x) x- 1+ h(x)

-- hl~ x)ox h~x -hx -)]

G xh~~x)[x-1 x)

Since h(x) > 0, h'(x) < 0, and x-l > 0 for x C(l,pa0 we see that

> L h W) < 1 -pox
A'x Wis f h (x) - 1I- p 0x

< 0 h(x) > 1- pixJ
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If x E (1, ) this means

01 <0 x < xA' (X) is 0 iff x

If x 1, we have

A'(x) <0 IV xE ( -, .1

A -1
If x 0, we have

A'(x) > 0 V x E (1,P1).

Since A(x) is continuous, we have shown that

A 4 A A

1(x) - sup (x), W(x) > W(x) for x 0 x.

Consequently,

L(x) = sup T(x), L(x) > L(x) for x x.

k+l
Now consider L on the boundary of [0,] . Since T,N1 > 0 V i

L - 0 on (pi-0]. 1-0,1,...,k. On (p0 -l we know from (2.10) that the

maximum value of L is given by

ki N 1 ' n-N1L
7T(-'N i) (1 - n i) n ().
il



Now consider the face (pj - I) for some J-1,...,k. If T - Nj > 0 then

L-0 on [pj = 1]. If T-Nj -0, then

k NL T-Ni
L PT(1 -po)nT=pi (1 -Pi)

i-I
i#j

so the maximum value is obtained by evaluating L at

A N

p0 mn T, pi - T (iinl,...,k) (2.12)

N
(since T - 1). The maximum value is

AN N
L(pO.Plp...9pk -L( n1 T,, -' . pk

if x E (1, 0 the likelihood equations have a unique root

p E (0,1)k + ', where p is given by (2.11). Since

L(p)- L<) > max[L(l),L% p.

L achieves its maximum in (0,1)k+1
. By uniqueness, is the MLE.

If xil, L has no root in (0,1)k+&. If p is given by (2.11),

L(;) - () L(1)>

aN
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A k+

Thus p maximizes L on the boundary of t0,1) , so p is the MLE.
A -k+l

If x - p0 , L has no root in (0,1) If p is given by (2.11)

L(p) - L(x) - L(O ) > L(l).

A k+1 ,

Thus p maximizes L on the boundary of [0,1) so p is the MLE.

This completes the proof that p given by (2.11) is the MLE in the
k

case T(1- pt) <5 1 - O .

The following table gives the complete description of the MLE p of

the MVB(k-l) parameter p.

P 0O, pi arbitrary (i-l,...,k)

T 0 or
A A A

pO arbitrary, p, =".= Pk = 0

Nj T, Ni 0 (i j) POPja N.jI pi O (iJ)

TT=(l ' ii) > I' o
iPoIl, A -n'N (-l1,...,k)

p 0 1l, p N (

Z V1r 0 o eq. , ,
T>O A Ia 0

-I ) - " xn"'N (i'l,... ,k)

where x is the unique solution in

A tl,;1]  of l-pox - yI (l-V&x)

(i'na'NNon"1 T)
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4 III. AN ITERATIVE SCHEME CONVERGING TO THE HLE

In the following discussion, we exclude those data configuations for

which p can be computed explicitly. in other words, we assume the

following:

(i) T >0, N I> 0 .Nk > 0
k

(iii) T >maxN,,...9N k).

We have shown (but perhaps not stated explicitly) that under (i) and (ii)

the equation

k

A - 1

has a unique solution x E (1, po 1.If, in addition, we assume (iii),

then

7( -LO

since o '. (iL-,2,...,k). Thus, (3.2) is not satisfied by x

so xE( 1 lo) Oni the other hand, If (111) fail@ then we have

T - N- 0 -> 1 * 0 for some j, so (3.2) is satisfiLed by

x PO10 hence x 1A 0 by uniqueness.
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The result of these considerations is that (3.1) is equivalent to

X^E (l4&P ) hence the situation described in (3.1) is precisely that in

which ye have no explicit formula for x, hence no explicit formula for p.

We now give a simple iterative solution of (3.2) under conditions (3.1).

IetA (0)

etx~" e 11-00& and define

x I I ITi-P

a Ik I hI 33

f or m 1, 2,3, . Figure IIiniaegrpclyhwteieaiv

Theepoe. x ~ s m

(O 0 -(2) -(3

Proof. if x(0) x then x( - x V m and we are done. Assume

(O < x Recall that
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k

and tha h ~ 0~Since x~o <Aw have, by thle

definition of x1) that

1 (0)> h(x -P OF.x

Moreover, by definition of x we have

Vt(I) A(0) ) > A Io

* Hence
^(O) < (1) <

Now asume

(0AC) <(I Wm A
< <x < ... I <x. (3.4)

By (3.4) and the definition of we have

()> h(x m) - l

Moreover, by definition of x we have

*h(x~m) > h(X) -P

Hence

S(TA) < (m41) <~
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which proves (3.4) with a replaced by m+ 1 . We have now proven by

induction that t;xM :m -0,1,...] is a bounded increasing sequence. Let

y - Ii. x

Then, by the continuity of h , we have

y - i x

P 1 0 
1 -h(y)3

or

Ml 'T- Py).

Thus y x, as required.

Now assume x .x. The proof is essentially the same as in the

preceding case, but we include it for completeness. We have

1- () <h ((O - 1 - P~l

and

( m .h(x < 'h(x) - PO

hence
x < XM 'C(O)
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Now assume

x<x <...<x ( 0 )

Then
l -o" '') < h( (̂ 'm) )  o" ,H

and

1-P, oX(m+1) - h(xm ) ) <h(x) -1-I.0;

hence

A <(l) (m) < ... < X A ()

This proves by induction that ( is decreasing and bounded below. Let

y x Ii. (m). Then we show as before that y x. This completes the

proof.

For any fixed n, define the estimates p (m-0,1,2,...) by

A

n) )~ p. if (3.1) does not hold

^(m) l ~ ) (

(Ex I- h, X ;Ikx ) if (3.1) holds.

Corollary. For any fixed n, p -p a.s. (M-a).

The proof consists of quoting the preceding theorem.

Two likely candidates for ; (0) are 1 and I. It would be useful to

develop some criteria for deciding which ;(0) to use. Also. the first

iterate p(' might be worthy of study.
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